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Figure 1: (a) A consistent colorization of five representative (b)sangainted partitionings computed from each pose. (c) Our
segmentations are superior in terms of (e) skinning error when ceahpaprior art ((d) illustrated segmentations $¥07]) in
most of the testing resolutions. Skinning weights computed from the smsgigistentation are also shown.

Abstract

We present a complete approach to efficiently deriving a varying levéétaiit segmentation of arbitrary animated
objects. An over-segmentation is built by combining sets of initial segnanfsuted for each input pose, followed
by a fast progressive simplification which aims at preserving rigid setgn&he final segmentation result can
be efficiently adjusted for cases where pose editing is performed or ness poe added at arbitrary positions
in the mesh animation sequence. A smooth view of pose-to-pose sdgmeraasitions is offered by merging

the partitioning of the current pose with that of the next pose. A percypfu@ndly visualization scheme is also
introduced for propagating segment colors between consecutive. fgsesport on the efficiency and quality of our
framework as compared to previous methods under a variety of skatetdlighly deformable mesh animations.

Categories and Subject Descript@egcording to ACM CCS) 1.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms, languages, andnsyst&.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Animation

1. Introduction applications enabled by partitioning deforming mesh
sequencea surface mesh with dynamic geometry but fixed
connectivity. Mesh animations can be roughly divided into
two categories: (ipff-line which consists of a fixed number
of stored consecutive animated meshes andréa)-time
which is either streamed from a shared distributed virtual
environment or dynamically generated from interactive
manipulation of a deformable object.

Segmentation of mesh animations, despite being a new
research field when compared to static mesh partition-
ing [Sha08, has become a key issue in a number of computer
graphics applications. Animation compressioASp7,
skinning mesh animationgd 705 KSO1Q LD12], skeleton
extraction BY07, DATTS08 HTRS1(Q, deformation trans-

fer [LWCO6] and ray tracing GFW*06] are representative

While the output depends on the type of application, the
main goal of segmentation is to partition the animated mesh
T abasi | ak@s. uoi . gr into regions with similar motion characteristics. Many geo-

t fudos@s. uoi . gr metric properties have been proposed for defining the feature
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space. Significant features, which form a dense region in fea-
ture space, can be detected by one of the numerous available
clustering techniques. From now on, we denote such ap-
proaches aglobal segmentatiomethods, because they work
with average motion measures that represent the degree of
deformation during the entire animation sequence. However,
these methods are rather limited in cases where the feature
vector space is either (flat: unable to separate regions with
similar feature values (zero-variance) or éi)isotropic one

or more features dominate the others due to higher variation.

Regardless the clustering criteria, current methods focus
on detecting segments with mostly rigid behavior, failing in
partitioning correctly highly-deformable objects. In addition, Figure 3: Three different ways of joining a sequence of
the segmentation output highly dependents on a large set of partitionings: (a)off-line, (b) real-timeand (c)variable seg-
parametergthat should be determined a priori. Finally, the mentations. Nk, y] denotes the over-segmentation between
entire process cannot be carried out when the user requestgpy, ..., py] poses.

a different segmentation resolution or the mesh sequence is
modified[CH12: either being (i) subjected to pose editing
operations or (ii) augmented with additional poses that did
not exist in the original mesh animation.

years in the literaturegha08. Most of them are targeted on
partitioning static objects into either meaningful volumetric
componentsgart-typesegmentation)GGV0§ or surface
patches gurface-typesegmentation)JKS03, depending on

the application. Recently, several approaches adapted pre-
vious segmentation algorithms to work with 3D deforming
meshes exploiting the analysis of the motion information.

[DIHF12] utilized multi-source region growing
algorithm based on similarity of statisticatariability
characteristics to favor grouping between surface regions.
Similarly, [LWCO06] partitioned a mesh sequence into clusters
with similar rigid motion by growing feature clusters based
ongeodesi@anddeformationdistances. KMD *07,KSO1Q
useduniform distributionanddeformation gradientsSP04
to initialize their skinning decomposition, respectively.

noisy
segments

Po Pr1 Py M(k-1,k]
Figure 2: lllustrating the extra segments created when two
consecutive pose partitionings are successfully merged.
[LD12] replaced previous clustering method wikx

We introduce a generic framework for efficiently gener- meansand used bongansformation matriceas assignment
ating multi-resolution segmentations that account for both attribute. AS07] further employed K-means based on the
articulated and highly-deformable mesh animations. Based local similarity between th&ajectoriesin a cluster-defined
on the observation that only a limited part of the surface coordinate system to assist their compression method.
region is modified from frame-to-frame, we build awer- When the number of resulting clusters is unknown a priori,
segmentatioly combining precomputed per-pose partition- mean-shift clustering was applied based mtation matri-
ings. The desired segmentation resolution is dynamically ces[JT0F andgeometric invarianfeature vectors[XL *12]
determined by the user by applying a fast refinement process to segment animated objects into near-rigid components.

which aims at cleaning insignificant or “noisy” segments cre- . . .
ated when successive partitionings are merged (see Fjjure [SYO7 and WPPO7 derived abottom-up hierarchical
clustering by merging (initially per facet assigned) clusters

Contrary to global segmentation methods, our pipeline

can handle both off-line and real-time mesh animations by
exploiting different merging strategies (see Fig8(a),(b)).

Despite the independent per pose partitioning, a consistent

segmentation is maintained over time (also knoweaigble
segmentatiofACH™* 13]) by merging the partitioning of the
current pose with that of the following one (see FigB(e)).

Thus, each segmentation is similar to the one in the previous

step and accurately reflects the new data arrividigT06].
Finally, a novel visualization scheme is introduced that

provides perceptual consistency between consecutive poses.

2. Related Work

A large variety of 3D mesh segmentation algorithms using
different partition criteria has been introduced the last few

until one node is remained basedragid andaffine transfor-
mationmetrics, respectively. Conversel@FW*06] applied
atop-down hierarchical approach to break mesh down into
sub-meshes with similaaffine motion Starting from one
cluster which represents the entire object, a partition is cre-
ated by segmenting it into two or more components. On the
other hand, ACH* 13] proposed to incrementally refine the
final segmentation as a new pose arrives by splitting current
components into parts which present consistigid motion.

Recent work by DATTS0§ and HTRS1Q ACH*13]
exploitedspectral clusteringto segment a deformable mesh
into approximately rigidly moving groups usirepclidean
distanceandrotation anglesimilarity metrics, respectively.
Moreover, FKY*10] used spectral clustering for effective
curvilinear feature and deformation discontinuity detection.
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Figure 4: Diagram of the proposed pipeline.

Finally, [WB10] produced a near-rigid segmentation finding
the minimum spanning tree of the mesh’s dual graph
weighted bydihedral angle®f neighbor faces.

Similarly to our method, co-segmentation tech-
niques HFL12] may be adjusted to consistently partition a
sequence of animated poses. However, they perform relative
slow, they do not support pose editing as well as they are lim-
ited to work only on quasi-rigid animations with fixed frames.

3. Framework Overview

We present a general method to efficiently segmenting
arbitrary mesh animations involving two main steps. An
over-segmentation is first constructed by combining a set
of individual partitionings corresponding to each input pose
of the animation sequence. Partitioning of each pose is
precomputed in parallel using any of the numerous available
feature measures and clustering methods (Se@&idn A
pose partitioning featuréusually a deformation measure) is
computed from an animation pose and a reference pose. A

Definition 3.3 The over-segmentation &) of A over
Ci(M),i = 1,...,k is a partitioning ofV in equivalence
classes called segments based on the transitive closure of the
binary relationNS. Then, we denote bgegmerntyv,i), the
segment (equivalence class) wherbelongs based on the
equivalence relatiolm NS. Fori = k, we obtain segments of

the final over-segmentatiocBSA). For otheri < k, we ob-

tain the corresponding segment that is produced by the over-
segmentation d®S po, p1,- - -, Pi)-

Property 3.4 segmeny, j) C segmentv,i), i < j

Proof Fori = j, the two segments are identical, since we have
equivalence classes. Fok |, let vertexu € segmeny, j),
then there is a path betwearandv, and for every vertex
in the path it holdsavw)[1, j] = cauV)[1, j]. Then, for all
verticesw in this path fromu andy, it holdsca\w)[1,i] =

cavv)[L,i]. So,u € segmerty,i). [J
Immediate from the property above is that
segmenrfus,i) = segmentuy,i), for all vertices

ui,Up € segmenty, j),i < j. Thus, we may denote this

progressive simplification process is subsequently applied to pew segment byegmertsegmenty, j).,i).

refine the segmentation graph guided by a temporal-coherent

area-aware edge collapsing technique (SecBd?). An
example ilustrating the overall information flow and the
individual steps of our method is shown in Figdre

3.1. Pose partitioning-aware over-segmentation

LetM be a mesh of fixed connectivity represented by a graph
M = (V,E), whereV is the set of vertices{| = n) andE

is the set of edges. Lgj; : E — R® be an assignment of 3D
values to the vertices that corresponds to pasen anima-
tion sequencA = (po, p1, P2, - - - , Pk) With kanimation poses
p1, P2,--., Pk and a rest-posgg. LetCi(M),i = 1,...,k be

a partitioning (clustering) o¥/, such that each subset cor-
responds to a connected induced sub-grapl of; (M)

{0, ... ,Ci' } represents the resulted clusters based onpose

Definition 3.1 We define a clustering animation vectGAV )
for each vertew € V such thatta\v) = (my,mp, ..., my),
wherecaVv)[j] = mj € 1,...,|C{(M)]| is the cluster index
thatvbelongs toin pospj. Similarly,cau(V)[i, j] is the vector
of cluster indices wherebelongs to in poses;, Pit+1, - - -, Pj-

Definition 3.2 Let NS (neighbor similarity) for animatioi

be a binary relation between vertices. We say that for two ver-
ticesu NS vifandonlyifcavv)[1,i] = cav(u)[1,i] A ((u,V) €

E Vu=v). Clearly,N§ is reflexive and symmetric for all

i €[1,...,K. By taking the transitive closure S, denoted

by TNS we have an equivalence relation. The equivalence
relation partitiond/ in equivalence classes.

(© 2014 The Author(s)
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To algorithmically obtain the segments of the over-
segmentation (equivalence classe©&A)), we can easily
prove that this is equivalent to detecting for a verntethe
maximal connected induced sub-grapiivbivherev belongs
and all its vertices have the same CAV. To compute the
over-segmentation, we consider each vertex and perform a
pruned breadth-first-search to detect connected vertices with
the same CAV. During this process, we mark each edge so
that we will not visit it again. This takes tim®(|E|) which
for regular non-manifold objects i©(|V|) = O(n). The
details of this algorithm are shown in Algorithin Figure5
illustrates the CAV generation for all clusters of the resulted
over-segmentation created from three pose partitionings,
where cavS;j) corresponds to the CAV of segmef
(vertices belong to same segment have the same CAV).

3.2. Progressive decimation of over-segmentation

Following the generation of the over-segmentation, we per-
form a cleaning with parametare [0, 1] calledp2p-cleaning
(pose-to-pose cleaning) starting from pgiethen for pose
pk_1 towards the first animation pogg. Each cleaning op-
erationR; (h) on posep; is based on the followingeduction
rule: Given a posep; and a pair of segmen{$a, ), S8
absorbss, if and only if the following holds foSa:

a(Sy) <h-ac ™)
a(Sy) < h- a(segmentSy.i - 1)

1)
)
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Figure 5: lllustrating the CAV for each vertex and segment created jwarimg three pose clusterings C, and G. The over-
segmentation graph OS(A) is decimated only at the edgsdys, €92, €34} Which satisfy the temporal-coherent reduction rule.

Algorithm 1 Over-segmentation(A)

1: OSA) + ©; VL« listof all vertices inv;
2: Kmax<— 0; Vv eV :v.segmenk— —1,;

3: Mark all edges as not visited;

4: whileVL# ©do

5: V<« VL.next

6: if vsegment== —1then

7 Sinax < 1V} v.segment— kmax;
8: Kk < Kmax; kmax — Kmax+ 1;

9: else
10: k < v.segment
11: end if
12: for eachnot visited edge < (v,v;) do
13: Mark edges as visited;
14: if caVv) == caVv;) then
15: S SU{vik
16: vi.segment— k;
17: end if
18: end for
19: Remove vertexfrom listVL;
20: end while

21: OSA) ={%,S1,- - Senax—114

andSg is a segment such that,

S € N(S) Acav(S)[Li— 1) = cav(Sp)[Li~ 1 (3)
AcauS)li] # cavSe) ]
a(Ss) > a(Sy) @)

where N(Sj) are all neighbor segments & in the final
over-segmentation ane(S;) is the area of segmers;.
Note that after the reduction, the area of the new cluster is
considered for the purposes of reductions in this pose to be
this of the absorbing clust&s.

The conditions forSg (3 and 4) state tha$g is the largest
neighbor of Sy (larger thanS,) in the over-segmentation
and they belong to the same cluster in all poses fm@mno
pi—1 and to a different cluster in pog®. This means thaba
andSg were split to represent separate segments in ppse

Thus, we need to check whether one of them was erroneously

created due to small cluster border differences, and should
therefore be absorbed by the other. This is checked by the two
conditions forSa. The first condition ensures thgt is small

as compared to the cluster that contains it in pgséhus it

is not a significant part of a segment at p@seThe second
condition states th&, is small as compared to the superset
of segment&g in posep;_; and they have been split into two

or more parts in posg;. This corresponds to a segment of
the over-segmentation of the animatiépg, p1,-..,Pi—1)

and at this phase is a candidate group of clusters (including

Sa andSg) to become one (or more) independent meaningful
segment(s) after cleaning.

This reduction rule exploits temporal coherency, which
means that we can perform an educated reverse pose-to-pose
cleaning of non meaningful clusters preserving useful
deformation information. We have explored global rules (not
per pose) and we have observed that they tend to favor larger
clusters without respecting other cluster characteristics. This
fact makes them inappropriate for mesh segmentation of an-
imation sequences. Figusellustrates the possible reduction
steps applied to an over-segmentation graph when our p2p-
cleaning is employed. Note that from all potential collapsing
edges, only four satisfy our history-based condition.

The details of this algorithm is shown in Algorith
The initialization take& steps. At each step it tak€¢n), to
initialize the areas, to build the graph of adjacent segments,
and to reconstruct the partial over-segmentation. Then, with
careful updating of visited edges in the segment neighbor
graph we are able to carry out each step at tide),
wherer = |OSA)|. Thus, the cleaning process takes time
O(k(n+r)). The following substantiates the correctness of
the p2p-cleaning process.

Lemma 3.5The p2p-cleaning process will have a unique re-
sultin a finite number of steps.

Proof Since we reduce the number of segments by one ateach
step, the p2p-cleaning process may take at f@SA)| re-
duction steps overall for all poses. Next, we shall prove that
at each pose, we obtain a unique segmentation which is not
affected by the order in which we apply the reductions. We
can think of the cleaning process as a rewrite system, which
will have a unique eventual result. More specifically, we will
prove that the reduction rules are compliant to @feurch
Rosseproperty. Thus, if at some step of the cleaning process
at posep;, we have a partially cleaned over-segmentation
and we have two candidates: a reductiy(Ba, Sg) yielding
anew over-segmentatiéand a reductiol, (Sy, S) yield-

ing a new over-segmentati@f, then it suffices to prove that
there is a sequence of reductions frQrand a sequence of re-
ductions fromQ’ so that we obtain the same partially cleaned
over-segmentation configuratidh (see Figures(top,left)).
Figure6 illustrates how a portion of the over-segmentation
at posep; is build when theC; (painter with red) breaks the
existing segments of the over-segmentation of the animation
(po,---,Pi—1) (painted with green) into one or more com-
ponents. Since this is always a partitioning, we distinguish
among the following cases:

1. Sa, Ss, Sy andS; are four disjoint sets (for examp® =

(© 2014 The Author(s)
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Ce, S8 = C4, Sp = Cp andSi = ce), in which case we can
always carry outthe other reduction, and reach the $ame
2. If we have two pairs of identical sets then this is the same
reduction, since this is only feasible wh&g = S, and
S=S
3. There is just one pair of identical sets. Then, we cannot
haveSa = S, since only one of the two reduction would
have been eligible. If we haveg = S (for example
Sa=Ch, S8 = = Ce, Sy = Ce), then ifS, is absorbed
by S5 = Sg then the new cluster will also abso8a and
vice versa. It remain to consider the case wgte= S
(or Sy = Sg). For exampleSg = Ce, Sa = S5 = ¢4 and
S = cc. Ifwe carry out firsR; (S, ), the new area of the
merged cluster will be the one & which by definition
is larger thanS, thus the other reductio (Sh, S5)
will still be eligible. If R{(Sh, Ss) is carried out first then
the new merged cluster will have the areaSgf= SA,
therefore it will be still eligible to be absorbed BY.

\’":.Qf. 0 T Cr
N \{:{
A =

Cd

Ce
a(cy)<h-a(cs), a(cy)<h-a(ce)

a(c)<h-a(cc), a(c.)<h-a(cg)
a(cq)<h-a(cp), alcq)<h-alce)
a(cc)<alcy), alca)<alce)
a(cd)<a(cy)

Cc o

Figure 6: lllustrating the correctness proof: In this example,
we close up at the reduction that will restructure the green
clustercg, which belongs to the over-segmentation until pose
pi_1, when is decomposed by the red partitioningppfFor
smallh, segmentse andcy will absorbcs andce.

4. Applications
4.1. Smooth Visualization of Cluster Transitions

Since clusters may vanish, shift or arise when moving
through time, we introduce a perceptually friendly visualiza-

tion scheme to propagate as much as possible the segment
colors between consecutive frames. A user should perceive

the transition from one frame to the next one avoiding if
possible to encounter totally different coloring of clusters.
We follow a strategy that aims at covering a high distribution
of the color space minimizing the possibility of “close”

colors be assigned to neighbor clusters. The algorithm starts

by initially painting the partitioning of the first pose, followed
by a propagation of the cluster colors from pose to pose.

Rest-pose coloring A breadth-first traversal is applied by
picking a random cluster as root node. At each node visit, we
set the next color from the palette shown in Figtithat does

not conflict with an assigned color from its neighborhood.
A 2-ring neighborhood can also be used to increase color
distribution. The palette is aRGB color wheelwith 12
divisions: an illustrative organization of color hues around

(© 2014 The Author(s)
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Algorithm 2 p2p-CleaningDSA), h)

1: for p«k,1do
OS(A).computeArea();
foreachSy € OSA) do
if Clear(SA,C,C)a"(SA”p] .h, p) then
maxArea— a(Sa);
for S§ € N(Sy) do
if maxArea< a(Sg) and caSa)[1.p—1] =

cawss [1.p— 1) andcav(S) p] # cav(Ss) [P then
: maxArea«— a(Sg);

Noak wn

: end if
10: end for
11: if maxArea> a(Sa) then
12: S.Copy(Sh); > neighbors,vertices,faces
13: comment: Leavea(Ss) unchanged
14: OSA).RemovéSy);
15: end if
16: end if
17: end for
18: end for
19: function CLEAN(Sa, Sp, h, p)
20: if a(Sa) > h-a(Sp) then
21: return false;
22: end if
23: S = new List<Vertex>();
24: comment: The following is realized with a breadth
25: first search fron$s (similar to Algorithm1)
26: for eachv € segmentSy, p— 1) do
27: S .Add(v);
28: end for
29: return a(Sa) < h-a(8);

30: end function

a circle that consists of the primary:{red,green,blue}, sec-
ondary:{cyan,yellow,magenta} and tertiary colors:{colors
between primary and secondary ones}. Note that comple-
mentary colors lie opposite to each other in the color sphere.
In case of color overflow (chromatic number of the cluster
graph> 12), a larger ring of colors should be used.

Yellow(0)

Orange(9) Chartreuse Green(10)

Red(5) Green(1)

Rose(8) Spring Green(11)

Magenta(4) Cyan(2)

Azure(6)

Violet(7)

Blue(3)

Figure 7: RGB color wheel. Color order is shown in brackets.

Pose-to-pose color propagationA new future-clusterini-
tially computes how much area covers from each of its over-
lappingpast-clustersn linear time. A breadth-first traversal

is afterwards applied picking as root the cluster with the
largest covering area. Each future-cluster inherits the color
of the first of its past-clusters (sorted by the overlapping area)
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that is not covered by any of the rest of the future-clusters.
Note that this color must not conflict with any previously
assigned color from its neighborhood. If a future-cluster
covers only one past-cluster and cannot inherit any color, we
assign it the next available color from the palette. Otherwise,
we use a mixed color of its two largest covering past-clusters.

To avoid the following problems that arise when mixing
neighbor cluster colors during the color propagation phase:
(a) producing a color slightly different from the existing ones
and (b) giving a neutral grey color, we propose (a) changing
the cyclic traversal order of colors and (b) assigning to a
cluster a color that is non-complementary with respect to the
neighbor clusters.

Figuresil(a),8(b),11(a), andl2(a) illustrate the perceptual

methods CKTO06] and splitting/merging operation on the
past-clustering ACH*13]) and can achieve interactive
performance when a fast per-pose clustering is employed
(for computation times see Tahlg. Figures8(c) and12(b)
include variable segmentations of a cloth simulation and a
dance animation, respectively. Observe that the temporal
consistency is better preserved when the joined clustering se-
guence is used as compared to the individual pose clusterings.

4.4. Multi-resolution Segmentation

Contrary to bottom-up and top-down hierarchical clustering
methods which can only merge or only split clusters to reach
the desired segmentation solution, we provide users with an
interactive tool to adapt resolution of the final segmentation.

intuitiveness of our color propagation scheme when moving As discussed above, our approach aims at cleaning small-
throughout the sequence. The same algorithm can also bearea clusters which usually correspond to highly-deformable
used for any segmentation pair without the need of history regions. Starting from a noisy over-segmentation, users

context. Thus, we have applied this approach to demonstratecan efficiently simplify it by adjusting thén parameter.
the color transition results between (a) the variable segments Intuitively, the moreh is increased, the larger the parts to be

and (b) the variable resolution segments obtained by our
method. Finally, Tablel shows its interactive nature when
rendering several clustering sequences (from the high-detail
elephant gallop (188 fps) to the low-detail hand animation
(715 fps)).

4.2. Real-time Segmentation

Our framework can efficiently handle segmentations of
streamed or dynamically created mesh animations without

removed. However, they are upper-bounded by the resolution
of the initial over-segmentation.

Figures 1(c) and 12(c) illustrate how the rigidity in
the segmentation is preserved when the level of detail is
decreasing. Table shows the performance efficiency of the
p2p-cleaning process for various mesh animations. Note that
this process does not depend on mesh geometry size.

4.5. Combine Segmentations of Mesh Animations

the need of downloading the pre-processed animation framesExcept from joining pose partitionings to derive a final

for off-line segmentation. This is a key feature that is not
offered by previous approaches. The idea is to merge the
newly “arrived” pose partitioning with the segmentation
resulted from joining the partitionings of all previous poses
(see Figurg(b)).

Figures8(a) and11(b),(c) provide thorough examples of
incrementally merging a number of pose partitionings to
generate the final segmentation of real-time mesh animations.
Observe that cluster-refinement is omitted at each frame in
Figure8(a). On the other hand, the intermediate segmenta-
tions are enhanced by the cleaning procedure in Figji().

4.3. Variable Segmentation

We consider the problem of clustering data over time, main-
taining simultaneously two conflicting criteria: (a) remain
faithful to the past-data and (b) effectively alter when moving
on to future data. This application is helpful to detentition
changesat each time step, contrary to the information ex-
tracted by traditional segmentation methods desired for sub-

segmentation, our framework can easily combine different
segmentations of one or more mesh animations. Note that
our approach can only work when a bijective vertex mapping
between the animations has been established.

Figure9 illustrates thesegmentation transfesutput be-
tween individual mesh animations. This is very helpful since
animators may avoid the burdensome manual work of produc-
ing the intermediate result. The global segmentation of each
animation produces a better partitioning of each movement
leading at a superior merged segmentation when compared
to the one derived from joining both animations. This is due
to the reduced multi-modal distribution of the feature space
computed from the motion of the merged animation.

4.6. Modifying Mesh Animations

Using our framework, we can avoid the segmentation
re-computations when the user performs editing or extending
operations on the original animation sequer@d12. Since

the over-segmentation result does not depend on the joining

sequentshape analysis and geometry processing applicationsorder, we can simply join the new partitioning (from the

Despite clustering independence between individual
successive poses, we offer users with a smooth transition
between pose-to-pose clusterings, by joining the optimal
partitioning of the current pose with that of the next pose
(see Figure3(c)). Due to the small number of resulting
clusters, cleaning can be avoided. Our method is highly
efficient when compared to previous variable segmenta-

edited or the added pose) with the final segmentation of the
original animation.

FigurelOillustrates how a segmentation, computed from
merging clusterings of an initial set of flamingo poses, is
adjusted to reflect the motion of two newly added poses.
On the other hand, FigurEl(c) demonstrates how the final
segmentation of a mesh animation is efficiently altered

tion methods (evolutionary versions of classic clustering when pose editing is performed. For clarity, we provide

(© 2014 The Author(s)
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Figure 8: (a) Real-time segmentation construction process. (b) Pd&®pang enhanced by our color propagation scheme. (c)
Variable segmentation. (d) Our output is superior in the context of iffinakg error when compared to (e) the onek§01d.
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Figure 9: Merging (d),(e) the global segmentations fr@&&{v*06] of (a),(b) two individual mesh animations. (h) We observe
the skinning error superiority of (g) our merged segmentation whempaced with (f) the global segmentatio®FW* 06] of (c)
the animation created by merging both animations.

the intermediate steps of the incremental merging strategy accompanying video. The experiments were performed on
despite the fact that the same segmentation can be producedan Intel Core i7 870 @83GHz CPU using multi-threaded
by merging the partitioning of the edited poses with the final implementation.

segmentation of the original animation. A variation of a top-down hierarchical clustering tech-

nique [GFW*06] is used in our experiments for primary
pose-decomposition. Rotation angles, extracted from the de-
formation gradients3P04 computed with respect to the rest-
pose, define the one-dimensional feature space. We compare
our segmentation results with the ones derived by a variety
of widely-accepted global segmentation methods using the
same number of desired segments. This is accomplished by
accurately adjusting the valuetefWithout loss of generality,

we have used uniform seeding and the same number of iter-
ations (5) for all clustering algorithms and 1% of the vertices
are used as initial input for spectral clusteri@ATTS0g.
Finally, K-means|[D12] and spectral clusterindATTS0§

(b) add pose (c) add pose

hi
{
i

(a) initial pose dataset

2 |

T

< 3

) )

Figure 10: (a) Final segmentation constructed by joining 8
initial pose partitionings. The segmentation is refined after
adding (b) initially a new pose, (c) followed by a second one.

may result in segments with several disconnected compo-
nents when segmenting non-rigid animations making these
results unable to support several graphics applications.

5.1. Performance Analysis

. Experimental . .
5 perimental Study Table 1 presents a comparative performance overview

We evaluate our proposed segmentation technique with of the intermediate steps employed by our framework to
respect to performance and quality under a broad set of produce a final segmentation. The computation times for
testing inputs. These include rigid, highly-deformable and all steps exhibit a linear behavior on the mesh geometry
hybrid mesh animations. Tablesummarizes the geometry  size, which is consistent with our time complexity analysis.
properties and clustering details for each animation. For Furthermore, note how the over-segmentation and cleaning
more segmentation results, we refer readers to watch the performance scales linearly when the number of per-pose

(© 2014 The Author(s)
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(d) our method (5)
(L {0.02}

18/
(e) our method (10)
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(f) [DATTSO08]

18
(h) skinning error (Egy,s)

Figure 11: (a) Smooth visual transitions of the pose partitionings with 5 @rdhponents. Editing operations are highlighted
from the partitioning of the modified poses. Intermediate real-time segitrmnsieps (b) before and (c) after editing is applied.
(d),(e) Contrary to our refined segmentations, (f) outpub#TTS08 results at wrongly decomposing non-animated areas.

segments increases at the elephant mesh animation. Thevolumetric parts. On the other hand, segmentation of a
efficiency of our framework is constrained by the individual highly-deformable object is targeted at decomposing the
pose decompositions which take more that 90% of the total mesh into surface patches with similar motion characteristics.
computation time. Finally, note that we cannot support
interactive performance for segmenting mesh animations
when the top-down hierarchical clustering is used. Moving to
multi-source region growingd{SO1q as initial partitioning,

we achieve 6 fps when real-time segmenting the hand
animation (Figurel). A GPU-accelerated clustering may be
explored as an alternative to speed up performance.

In this work, we evaluate our method iskinning context
how well the segmentation-aware compressed animation
reproduces the original animation when linear blend skinning
is used: A simple assignment methddMD *07] is initially
employed to set the skinning weights we [0,1] which
describe the amount of influence ¢fth segment ori-th
vertex. A fitting process is followed by computing the

Figure 12(f) shows that our algorithm is better in terms  matrices l\}] € R3** that describe the transformation of each
of performance when compared to a variety of global segmentj from the rest-posegg to the subsequent poses
segmentations. This is due to the fact that segmentations thatp, vt € [1,k]. The transition of vertex from the rest-pose
explore spectral clusterin@RTTSO0§ or skinning transform V¥ to a posep is then described byl = Z'S— Wi ,—Mt-v?,
matrices GFW*06, SY07, LD12] as motion characteristic whereS s the total number of segments.l%hﬁ,\jrzg, e]rror
suffer from high computation times. Mean-shift clustering  patric proposed byHS0O1( is used to measure the mean

aware methodsJr05 LXL *12] should also be avoided gyinning approximation error of the animation sequence.
to produce fast global segmentations. On the other hand, - IA—A||¢ |
region-growing KSO1(q is faster than our method in low ~ More specifically, s = 10005, whereAandA’ are
resolutions. However, this comes with the price of limited 3k x n matrices that contain the origing\{ }) and skinned
quality of the generated partitions. Contrary to prior art, our approximated {0} }) coordinates of each vertex throughout
method is only slightly affected when changing from one the animation sequence, respectively.

segmentation resolution to another one. Rigid Animations. Figurel(e) shows the comparison of our

method in terms of extracting rigid parts when segmenting an
animated hand. Low-resolution global segmentati@Y]7]

fail to accurately partition most of the articulations (e.g mid-
Contrary to static meshes where several definitions and dle finger). These segments are captured at higher-detail
metrics have been introduced to define optimal segmen- representation with the burden of noise cluster creation. From
tation depending on the application objecti@dF09g, a the Ervs table, we observe that the behavior of our method
framework for the objective evaluation of segmenting mesh starts to change when the number of the final segmentation
animations is missing. Intuitively, when mesh movement is resolution is low. This is reasonable since high-resolution
defined as a function of an underlying skeleton, the segmen- segmentations consist of numerous tiny noisy clusters
tation objective is to partition the surface into meaningful generated between consecutive partitionings. Increasing the

5.2. Quality Analysis

(© 2014 The Author(s)
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number of per-pose extracted segments will enhance the
skinning approximation.

In Figurell, pose partitionings of 5and 10 components are
merged to construct multi-resolution segmentations of an ele-
phant gallop animation. First, we observe that the quality of
the former is insufficient due to the low number of segments
per pose. This results in a significant loss of semantic part in-
formation such as the knee of the front-left foot (red-painted).
The segmentation quality is sufficiently improved when more
per-pose clusters are used. The accompanying table illus-
trates the skinning superiority of our method when compared
with several methods on a 18-component segmentation.

Deformable Animations. Figures8 and9 describe objects
that deform under no skeletal influence. Fig8rehows a

confidence criterion on the initial pose partitionings to retain
only important boundaries. However, this will come with the
burden of additional parameter tuning and extra computation
cost. Note that an efficient low-detail segmentation can only
be computed in case where the individual pose partitionings
exhibit high similarity. Furthermore, our method is suitable
for computing accurate high-resolution segmentations when
the number of per-pose segments is maintained at increased
levels. Conversely, merging partitionings that do not capture
the desired information, would normally lead to poor final
segmentation (e.g. quality of Figuté(d)).

6. Conclusion
We have presented a general approach to efficiently deriving

segmentation that consists of 23 components from a cloth @ multi-resolution segmentation of arbitrary deformations

simulation. Note that the number of per-pose clusters is basedon building an over-segmentation which can optionally
not-constant. Our segmentation preserves better spatialPe simplified by a robust cleaning reduction process. The
coherency without creating irregular shapes when compared final segmentation can accurately be adjusted when the orig-

to the global segmentatiorKEO1(J extracted from the
illustrated feature space.

A representative example of combining individual seg-
mentations extracted from tablecloth mesh animations is
shown in Figure9. The segmentation of the first mesh
animation is efficiently transferred to the second one. Mean

inal mesh animation sequence is either modified or updated.
A smooth frame-frame clustering transition is offered by

merging the partitionings between consecutive poses. The
resulting segments are painted on the fly by a novel color
propagation scheme. Finally, we have included extensive
comparative results with respect to performance and quality.

rotation angle was used to define the feature space. Note that-imitations/Future Work . There is a number of research
the merged segmentation is superior when compared to the directions that could be explored further to improve the lim-

global segmentationGFW*06] of the animation created
by blending both animations (e.g the highly-animated
protrusion region was captured by only one segment).

Hybrid Animations . Highly deformable objects can be used
to model clothes in conjunction with skeletal animation. Fig-
ure12illustrates how our approach produces segmentations
that accurately partition the rigid parts (head, arms and legs of
the dancer) from the highly-deformed surfaces (the dress fol-
lows the motion of the dancer) of a samba dancing animation.
On the other hand, global segmentati@YD7 produces
low-quality partitions. Despite the sufficient rigidity captured
at low-detail, the right leg is wrongly connected to the dress.
Moving to higher resolutions, we observe that rigid compo-
nents (head and legs) are significantly being “pruned” creat-

itations of the current work. First, our approach may easily
support time-varying meshe&CH*13] by exploiting vertex
mapping techniques to establish pairwise parameterization
between successive frames. Another challenge is to cope
with interactive segmentation on large meshes by taking ad-
vantage of the GPU high-performance parallel architecture.
Further directions may be investigated for tackling the prob-
lem of the increased resolution of over-segmentation. For
example, we may reorganize similar poses into clusters and
pick one of them thereby reducing significantly the number
of the merged partitionings. Except from improving perfor-
mance, this solution will also reduce the additional memory
requirements of storing the individual per-pose partitionings.
Finally, visualization coherency is lost between “far-away”
poses (e.g. observe the different assigned colors at the head

ing meaningless parts. This leads to a decreasing consistencysegment at the fifth and seventh pose in Figi#éa)). This

of the overall segmentation. Similarly to the hand animation,
we observe that moving from a high-to-low dimension our

happens when there is no mapping between clusters of suc-
cessive poses. An interesting alternative strategy could be to

method behaves better as compared to the rest methods whelincrease the cluster mapping search in a larger time window.

skinning is used to approximate the initial mesh animation.

5.2.1. Discussion

We generally notice that our algorithm produces better
segmentations when focusing on the visual quality of the
segmentations for the mesh animation, whether partitions
it into meaningful volumetric or surface parts. A centric
observation is that it is better to combine multiple parti-
tionings and simplify them, rather than trying to attempt
a global segmentation directly. However, the final output
depends on the quality and the number of the individual
decompositions extracted from each pose. We can explore
a number of directions to improve pose clustering quality
by (a) employing a more sophisticated clustering algorithm,
(b) rectifying the generated boundaries or (c) imposing a

(© 2014 The Author(s)
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